
Archive Assistant

 (AppleScript)

[Manual updated: 2017-04-23]  

Installation 1

What the Script does and how it works 1
Step by step 2

Explained 4
Add to Existing Archive 4

Run in Terminal vs normal mode 4

Metadata 5
No-metadata archives 6

POSIX archive types (cpio, tar, pax) 6
cpio or tar? 6

xar 7

zip/gzip 7

bzip2 7

lzma2 8
Solid block size 8
Dictionary size 8
Word size 9
Conclusion for best compression ratio 10

Disk Images 10
Metadata 10
Compression 10
Expandability 11

Resize 11
How to add files to a disk image 12
Removing files 12

Encryption 13
File encryption 13
File and header encryption (full encryption) 13

Multithreading 13

Why uncompressed archive formats? 14

Common errors 14
Archive/image creation fails because of existing file 14
No new archive is written 15
Password error / Operation not permitted 15
Filename too long for tar archives 15
Verify of disk images fails 15

Programs used by this AppleScript 15

Installation

The usual way to install AppleScripts is to drop them into the User Scripts Folder  
(~/Library/scripts). The script will sit unobtrusively in the AppleScript menu:

(If not already done you might have to activate the AppleScript menu in the preferences of
the Script Editor application.)

You may also launch the script with any launcher of your choice (LaunchBar, FastScripts,
Keyboard Maestro, Alfred, etc.). These launchers allow you to assign a shortcut or an
abbreviation to the script.

What the Script does and how it works

This AppleScript provides an easy and fast way to create a wide variety of compressed and
uncompressed archive formats on your Mac. It is not an unarchiver.

Although easy to use this script is not intended for the novice user who is not familiar with different archive
formats to a certain degree. For users who have no need for advanced archiving/compression I highly
recommend to use the Finder’s Compress in the contextual menu. This delivers metadata-friendly and
universally compatible archives, although at a low compression ratio.

The script was written to comply with the following functional specifications:

▸ Efficient archiving while preserving all Mac metadata (all extended attributes)

▸ Secure encryption solutions (only AES, no weak zip encryption)

▸ At least one efficient solution for metadata-free archiving (transfer to Windows users)

▸ Careful selection of the most sensical format options

▸ Easy access to useful but little-known formats or features (e.g. xar, shadowed dmg)

�1

▸ For compatibility: Access to all traditional / widely used formats, non-regarding their
efficiency (e.g. zip, gz, bz2)

▸ Assistive functions (e.g. the script will only offer archive types that make sense for the
selected items) and easy usage

The script puts an emphasis on the preservation of Mac metadata in the archives, i.e.
Spotlight comments, openMeta tags, Finder labels etc. Methods that will not preserve the
entirety of metadata are explicitly marked with No Metadata.

Usage of this AppleScript is simple:

1. Select the file(s)/folder(s) to archive in the Finder.
2. Launch the script.
3. Set archive type and options.
4. Wait until the archive is completed.

Just to be clear: This script does nothing that you couldn’t also do on the command line. It’s a mere “comfort”
script: It puts the most useful formats and switches at your fingertips and provides a GUI-like access to file,
options and destination selection.

Nevertheless it offers more flexibility and sensical archive options than most full-fledged GUI apps I know.

Some of the supported archive types, compression methods and features:

7z, lzma2, cpio, tar, cpio.gz, cpio.bz2, cpio.xz, zip, xar, compressed dmg, sparse bundle; dmg
shadowing, resizing, conversion, verification, sparse bundle compacting, …

Step by step

1. Select one or more files or folders in a Finder window.

2. Launch the Script from the AppleScript menu or from any other script launcher.

3. The first window “Archive Type” will pop up.

Make your choice. In the upper part of the list you have all kinds of “conventional” types of
archives, in the lower part you find all sorts of Disk Images (dmg). In-between of the two
groups you’ll see a special entry “Add to Existing Archive”. More on this later.

You can only select one archive type. Clicking Help will open this document. Click OK to
proceed.

4. The next window is the Options Window.

Its contents depend on the archive type you have chosen before. The main options are the
various compression levels for compressed archives. The other option – if available for the
archive type – is encryption.

If you don’t select a compression level the scripts will default to Normal (5).

�2

In the Options window you can make multiple selections with the Command (⌘) key
pressed, that is, you can select a compression level and the encryption option. Of course, it
doesn’t make sense to select two compression level settings at the same time. At the bottom
you have the run options, e.g. Run in Terminal. More on this later.

Help opens this document. The second Help options opens an archive-specific help
document.

Click OK after you have selected your options.

5. The third and final window will ask you for the destination of the archive.

You can select between Desktop, Same Folder (i.e. the same location as the source file/
folder) and Choose …. The latter opens the OS’s folder selection dialog.

Some archive types will pop-up an additional window, for example dmg formats will ask you
for the size of the image.

�3

You can cancel the script in any dialog window by clicking Cancel. To cancel the destination
dialog click Choose… and then Cancel.

Note: If an archive with the same path & name already exists, and the archive type supports
it (for example tar, 7z, zip), then the archive will automatically be updated. That is, the
selected files/folders will be appended, or files of the same name inside the existing archive
will be replaced. (Similar as with “Add to Existing Archive”.) 
So, if you want to create a new archive, make sure that an archive with the same name does
not exist at the chosen path!

Explained

Add to Existing Archive

This special entry in the first window (Archive Type List) lets you append items to an already
existing archive. In a dialog you will be asked to select the existing archive. You can only
append to uncompressed unix-type archives (tar, cpio, pax), zip archives and 7z archives.

Adding files to writable dmg formats can be easily done in the Finder, w/o any third-party
tool, by simply dragging and dropping to the mounted image.

Run in Terminal vs normal mode

In normal mode (none of the terminal options is selected) the archiving scripts are run in the
background. You won’t get disturbed (and you won’t get any progress report) until the

�4

completion window pops up when the job is finished. The completion window will show you
the shell output if available.

If you select Run in Terminal the archiving scripts will run in a terminal window. This is less
“elegant” than normal mode, but it provides you with live feedback on the archiving
progress. You may choose this option when archiving larger amounts of data that will take a
while. This way you can see the progress and you’ll also see immediately if something goes
wrong.

Another reason for choosing Run in Terminal could be the passphrase entry for encrypted
archives. As the passphrase is directly entered in the terminal (w/o “passing” through the
AppleScript) there is less risk of leaving traces of the passphrase on shared computers.

Paste into Terminal is like Run in Terminal but it doesn’t start the archive script. It just pastes
the complete precomposed command line to the terminal. This is useful if you want to do a
one-time modification to the command line, e.g. adding a ‘-mmf=hc4’ switch to do a lzma
compression with the slower but less memory hungry hc4 match finder. To actually run the
script just press Return.

You may also use this option if you just want to see what the command looks like.

Metadata

All archive types that are not annotated with No Metadata will fully preserve Mac metadata
(spotlight comments, openmeta tags,“resource fork”, any other extended attribute, ACLs).
Restoring of ACLs depends of the unarchiver application.

Of course, if your files are already “metadata-safely” archived inside of a tar, cpio, dmg etc. you can safely
further compress the archive/image with 7z – No Metadata without loosing the metadata of your files. What
you will loose in this case is only the metadata of the archive/image file itself. However this is not
recommended because with a tar.7z archive you loose the possibility to browse the archive without expanding
it completely.

Important: Xar archives must be extracted with ‘xar -x’ in order to restore metadata! 3rd-
party extractors (e.g. 7z, The Unarchiver, Pacifist, BetterZip) will discard metadata in xar
archives (they don’t handle the TOC.xml).

�5

No-metadata archives

Archive types annotated with No Metadata strip off all Mac metadata and are best suited for
one-way transfer to Windows users. Since Windows users often are computer-illiterate, the
most common archive type zip (No Metadata) is the most safe and thus preferred type for
this purpose. If higher compression ratio is absolutely required try 7z (No Metadata).

Avoid using deflate64-, bzip2- etc. compressed zip archives for this purpose. Also do not use
any of the unix-like archive types (tar, cpio, xz etc.) or dmg images. Most Windows users
won’t be able to open them.

POSIX archive types (cpio, tar, pax)

Cpio and tar are great ways on OS X to secure all file metadata before further compression.
Not every cpio or tar implementation is hfs metadata aware. This script uses OS X’s tar
(bsdtar) program to create tar archives.

Important: Although the metadata is correctly stored inside the cpio or tar archive, it is still
possible that it will be discarded at extraction time by a metadata-unaware unpacking
program. Most unpackers on OS X should be safe; I’ve tested it successfully with pax, ditto,
tar, Archive Utility,The Unarchiver, The Archive Browser.

cpio or tar?

The traditional advantage of tar (ustar) is that hard-linked files are detected and not
redundantly copied into the archive. However ustar has a severe file-name-length limitation
(255 chars for the fullpath or 100 chars for the name part). Cpio doesn’t have that limitation,
but it is unable to handle hard-linked files properly.

The tar (bsdtar) that ships with macOS does accept long file names and can handle hard
links. That’s why it is proposed as default archiving tool in this script.

In theory the newer pax format should also combine the advantages of cpio and tar. Strangely the pax format
isn’t supported by OS X’s pax (you can set pax as format with ‘-x pax’ but this generates just a ustar file (with
the file name length limitation) with a pax extension). The cpio utility on OS X supports the pax format, but it
isn’t metadata aware.

For gzip, bzip2 and lzma2 (xz) compression of Posix archives the script uses 7z instead of the
usual unix tools because of its multithreading capabilities (bz2, xz) and better compression
ratios (gz). Multithreading actually makes a huge difference here.

As gzip, bzip2 and xz don’t offer encryption I’ve added the possibility to create encryptable
tar.7z archives. However if you don’t need encryption you should stay with tar.gz, tar.bz2 or 1

tar.xz, because these formats will allow you to browse the archived files without unwrapping
the archive.

 Currently this format is disabled because the presence of two lzma2 formats (.xz, .7z) caused confusion 1

among some users. To re-enable it just copy the commented line in the script back into the list section.
�6

xar

Xar is one of the younger formats. It is metadata safe by default and seems to be used also
by Apple’s installers. For restoring metadata from xar archives please see the section
Metadata.

Xar is not a bad choice especially for the backup of complex structures because it copies
hard-linked files the same way as tar (non-redundantly) and additionally detects duplicate
files; that is, files with the same data but different names, modification dates or paths will be
archived just once, while their multiple instances will still be indexed in the archive header.
Always expand xar archives with ’xar -xf’ on the command line. Some GUI unarchivers are
not capable of correctly extracting hard-linked files!

Note: Some time ago I noticed that when unpacking a xar archive that contains hard-linked
files xar (the command line tool) reports a checksum error and doesn’t extract all files.
[Update 2017:] The checksum error is still reported but all files are extracted correctly with
‘xar -xf’. However: When working with hard-linked files, double-check if xar behaves
correctly on your system! >>> This note refers to extracting on the command line; GUI
unarchivers still fail to extract hard-linked files! <<<

zip/gzip

The zip option (via ditto) is almost identical to the Finder’s context menu Compress. The
difference is that you can choose the compression level and that you can choose the output
directory. On the other hand, Finder’s Compress allows you to gather multiple selections into
the archive.

The option zip – No Metadata is performed by 7z. 7z’s zip implementation achieves better
compression ratios and offers different compression level settings as zlib or ditto. This is also
true for 7z’s gzip. The available compression level settings for zip – No Metadata (e.g. 7 –
Maximum) correspond to the predefined settings of the 7z program.

The script doesn’t offer the option to make deflate64-compressed zip archives because this
would defeat the main purpose of the presence of zip in this script (maximum platform and
user compatibility). If you aim for better compression just choose bzip2 or lzma2.

bzip2

This is a traditional compression method for unix archives that is slower but compresses
better than gzip, although far from reaching the compression ratio of lzma2 (7z, xz). bzip2
compression of cpio archives is done by 7z as it has the best bzip2 implementation IMO. The
compression level settings (e.g. 7 – Maximum) correspond to the predefined settings of the
7z program.

�7

The more commonly known method to create bzip2 archives on the mac is ‘ditto -cj’.
However this is considerably slower (no multi-threading) and the compression ratio is not as
good.

lzma2

Lzma2 compression (used in 7z, xz archives) is the most efficient compression method that is
easily available on the Mac.

As with the other compression methods lzma2 can be configured in various ways. The
compression level settings (e.g. 7 – Maximum) correspond to the predefined settings of the
7z program. Each of these settings represents a mix of various parameters put together in a
meaningful way by the author of 7z.

The most important parameters of the compression level settings are solid block size and
dictionary size. Choose 7z Help in the Options Dialog to see the parameter tables or click
here.

Solid block size

Solid archives allow for a better compression ratio because the data of the individual files is
merged together. By default solid blocks are enabled, with the block size depending on the
compression level, e.g. 4GiB for level 7 and 9. You have two options to force a different
behavior:

Non-solid: Each file is compressed individually. Compression ratio will be considerably lower,
but in case of data corruption chances to recover files from the corrupted archive will be
higher. The second advantage is that it takes less time to extract individual files from non-
solid archives or to append files to a non-solid archive. With Non-solid set 7z behaves like
other programs that always compress files individually (e.g. zip, xar)

Solid by Filetype: Files with the same name extension are put together in a solid block. Let’s
see this as an intermediate solution between solid and non-solid. Interestingly sometimes
Solid by Filetype yields a slightly better compression as solid (at lower dictionary sizes).

If you are making lzma2-compressed POSIX archives (cpio.xz, tar.xz) the solid settings are
irrelevant as there is only one file to compress (the POSIX archive).

You can choose the solid-block behavior independently of the compression level.

Dictionary size

For most use cases the predefined compression level settings offer a good range of
compromises between speed and compression ratio to choose from.

One exception is the dictionary size: The dictionary size maxes out at 64MiB at compression
level 9 (Ultra). This size was obviously chosen by the author of 7z in order to keep the
amount of RAM needed for compression and decompression low. (With larger dictionaries

�8

http://sevenzip.sourceforge.jp/chm/cmdline/switches/method.htm

compression slows down and RAM consumption increases dramatically. See 7z Help for a
table of dictionary sizes at predefined compression levels.)

If the data to compress exceeds 64MiB and if there is enough RAM for compression and
decompression you will gain significantly better compression if you adapt the dictionary size
to the amount of data. You can do this by forcing a higher dictionary size in the Options
Dialog with the maximum being 1GiB.

For example, if you have 490MiB of data to compress set the dictionary size to 512MiB to
achieve maximum compression. (Setting it to 1GiB doesn’t yield any benefit for 490MiB of
data.)

If you force large dictionaries keep in mind that the consumed RAM for compression will be
about 11 times the dictionary size and the RAM needed for decompression will be equal to
the dictionary size.

If you choose a forced dictionary size the compression level will be automatically set to 9, no
matter which level is selected in the list.

As shown in the screenshot you can select one option from every group.

Word size

The third parameter you can explicitly set is the word size (fast bytes). If this has any effect
on the compression ratio will heavily depend on the data structure. A bigger word size will
always slow down the compression. In most cases you should be fine with not touching it.
See the 7z Help for more info.

If you choose a forced word length the compression level will be automatically set to 9.

�9

This is an experimental feature. I still have to find a real-world usecase where a word size > 64MiB has a
significant effect on the compression ratio.

Conclusion for best compression ratio

Choose lzma2 compression (that is, 7z or xz), compression level 9, and set the dictionary size
to at least the size of the data (but don’t set it higher as necessary).

If you can’t set the dictionary size to the size of your data (limited RAM or too much data)
set it to the largest possible size and try Solid by Filetype, if you are compressing multiple
files.

Play around with the word length setting, if you like. Keep in mind that at large dictionary
sizes the compression will not run in multiple threads.

Disk Images

In a strict sense disk images are not archives. However disk images on OS X are an extremely
versatile tool and can perfectly be used as archives. That’s why I’ve added them to the script.
Because of their versatility one can fill a whole book explaining all the details. So here only
some aspects concerning the use of disk images as archive format.

Metadata

Disk images “come” with a complete HFS+ file system, so metadata will be absolutely safe.

Compression

Unfortunately disk images don’t offer compression ratios comparable to lzma2-compressed
xz or 7z archives.

zlib-compressed images (UDZO) achieve a compression ratio comparable to zip archives. The
best compression ratio you get with bzip2-compressed images (UDBZ). lzfse is a new format
with about the same compression ratio as zlib at level 5, but both compression and
decompression are significantly faster. lzfse is only compatible with Mac OS X 10.11 (El
Capitan) or higher.

Uncompressed image formats are: Read-only, Read/Write, Sparse image, Sparse bundle.

�10

Of course you can always lzma-compress a finished disk image with 7z. (If you plan to do
this it is best to choose an uncompressed format for the disk image itself.)

Expandability

This is a huge advantage of disk images. You can always add stuff later, as long as the image
is large enough to hold the stuff. If you plan to add stuff later to your image it‘s always a
good idea to make the image large enough when you create it.

You can set the size in the Image Size dialog box:

“fit” makes the image just large enough to hold the source items (the items or the folder you
have selected in the Finder). This is fine if you don’t plan to add anything later. Otherwise
make the image large enough for future addition of items.

It is important to know that the image size will not necessarily affect the actual file size of the
disk image (size on disk). For example: You create a Sparse image of a folder of 5MiB and
choose as size 1GiB (1g). This means that the image will offer space up to 1GiB but the initial
file size on disk will still be only a few megabyte. The file size grows as you add more stuff to
the image later. Similar with compressed image formats: The unused space will effectively be
compressed to 0 bytes.

Resize
You can always resize an existing image by selecting it and launching the script. Choose the
Resize Disk Image option to expand an existing image:

You can only resize Read/Write images, Sparse images and Sparse bundles! Trying to resize
other image types will result in an error. If your image is not in one of these formats choose
Convert… to convert the image to a resizable format.

�11

How to add files to a disk image
The way how to add files to an image depends on the image format. If the format is a
writable format (Read/Write, Sparse image, Sparse bundle) you can add files by simply
dragging them to the mounted image.

But you can also add files to the non-writable formats zlib-compressed, bzip2-compressed
and Read-only. To do this you have to mount the image with the Shadow file option (see
figure above). Once the image is mounted you will see a file with the same name as the
image file with a .shadow extension in the same folder as the disk image file.

Now you can add files by dragging them to the mounted image, just as if it was a “really”
writable disk image. The files you add will be stored in the shadow file. You can unmount the
image and the added files will be safely preserved in the shadow file.

To incorporate the files from the shadow file into the disk image file you just have to convert
the image to a format of your choice with the Include Shadow File option activated:

At conversion your original image and shadow files are renamed to
<imagename>.old.<extension>. So you can check the integrity of the converted file before
deleting the original.

Please note that independently if you add files directly to a Sparse image or if you add files to
a non-writable image via the shadow file you can only add files as long as there is enough
space on the disk image (see previous section).

Removing files
If you remove files from a Sparse image or a Sparse bundle the disk image will not shrink
automatically. To reclaim the free space (and thus reduce the occupied disk space) you need
to use Compact Image. This is available from the primary window if a Sparse image/bundle is
selected.

To remove files from a non-writable image you have to mount it with Shadowed file and re-
convert it with the Include Shadow File option.

�12

Encryption

Encryption is available for 7z’s zip and 7z (lzma2) formats and for all dmg types. Encryption is
always AES-256 (no zipcrypto).

There are two concepts/types of encryption:

File encryption

The files inside the archive are encrypted. You can still see and browse the content of the
archive. You must provide the password when you try to extract an encrypted file. This
encryption type is offered for the 7z format; it is the only available type for the zip format.

Attention:

It is possible to have a mixed archive consisting of encrypted an unencrypted files, or of files
encrypted with different passphrases. This may easily lead to confusion later. If you use this
type of encrypted archive be especially careful when you add files to the archive: If you
provide a passphrase for the new files 7z will not check the passphrase against the
passphrase of existing files in the archive. It will simply encrypt the new files with the actually
entered passphrase; so chances are good that you will end up with an archive consisting of
files encrypted with different passphrases, maybe without knowing.

It’s up to you if you consider this a feature or rather a threat to your data. I recommend to
use this type of encryption only if you really need to be able to browse the content and if you
are sure that you won’t add files to this archive in the future. Otherwise use full (incl. header)
encryption.

File and header encryption (full encryption)

Archive content and archive header are encrypted. You won’t be able to see the contents of
an archive without providing the passphrase. You can only add files to the archive if you
provide the correct archive passphrase. This encryption type is offered by 7z and is the only
available type for dmg.

Multithreading

Multithreading is supported by 7z’s zip, bzip2 and lzma2 compression (not gzip). Multi-
threaded lzma2 compression delivers slightly larger output than single-threaded lzma2
compression. But the difference is negligible. Please note that lzma2 multithreading will only
come into play if the total amount of data is n-times the dictionary size. So don’t expect

�13

multithreading if you compress a 50MiB file at compression level 9 (dictionary size 64MiB).
See the 7z info for details.

With the multithreading capability of lzma2 we can say that lzma2 compressed Posix
archives (cpio.xz, tar.xz) are actually the most time-effective way to get highly compressed
output while preserving all metadata.

All archiving methods that support multithreading have an option to turn multithreading off.
Without multithreading archiving will take more time of course, but it also allows you to do
other CPU-intensive tasks parallel to the archiving process.

Why uncompressed archive formats?

The script offers quite some archive formats that are not compressed (tar, R/W dmg, Read-
only dmg, Sparse image, Sparse bundle). You may have asked yourself what’s the point of
uncompressed archives?

High compression ratios are only achievable with lzma.

You achieve this either in one step, for example with the tar-lzma2 option (=> tar.xz) or you
can prepare some tar (or cpio) archives of metadata-sensible files and compress them later,
possibly together with other files, in a solid-block 7z. In this case we prefer uncompressed
cpio/tar archives, because at the final 7z-lzma2 compression they will compress much better
than pre-compressed archives (e.g. cpio.gz) would do.

The same goes for disk images: If you want to archive for example several distribution dmg in
a highly compressed 7z archive, the final archive will be smaller if the included dmg are
uncompressed.

Note that you can still add files to cpio/tar archives as long as they aren’t compressed. You
can also add files to the disk image formats R/W, Sparse Image, Sparse Bundle. Using the
shadow file mechanism you can add files to all types of dmg.

Common errors

Archive/image creation fails because of existing file

There is already an archive / a disk image with the same name in the same location.

Solution: Remove or rename that item and run the script again.

�14

http://sevenzip.sourceforge.jp/chm/cmdline/switches/method.htm

No new archive is written

If the archive is of the type tar, cpio, pax, 7z or zip and there is an existing archive with the
same name and at the same path, then the selected file/folder will be appended to the
existing archive. See also this note.

Solution: Remove or rename the existing archive or save the new archive to a different path.

Password error / Operation not permitted

This happens if you try to add a file to a header-encrypted (fully encrypted) 7z archive
without having entered the passphrase while the script is set to run in the background.

Solution: In order to add files to header-encrypted archives you must provide the correct
passphrase. So you either have to choose the Encrypted option from the Options List or run
the archive script in Terminal Mode (then you will be prompted automatically for a password
if an encrypted destination archive is detected). See also section Encryption.

Filename too long for tar archives

This happens when you try to tar files whose name (last path component) exceeds 100 chars
or whose full path exceeds 255 chars.

Solution: Use cpio or shorten the offending filenames.

Verify of disk images fails

Some disk image types, e.g. R/W, sparse images/bundles, don’t have a checksum, so they
can’t be verified.

Solution: None. This is not an error.

Programs used by this AppleScript

Pre-installed on OS X and macOS in /usr/bin/:

▸ ditto

▸ tar (bsdtar), optionally pax

▸ xar

▸ dirname, basename

▸ hdiutil

�15

Bundled with the AppleScript:

▸ 7za (from the p7zip project, http://p7zip.sourceforge.net, under GNU Library or Lesser
General Public License (LGPL))

The 7za executable is located in the bin folder inside the script bundle’s Resources folder.

If you rather want to use the 7z installed on your system (e.g. from Homebrew), just
comment/uncomment the corresponding lines in the script (at the beginning) to enforce
the /usr/local/bin path.

�16

http://p7zip.sourceforge.net

